If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+150x-250000=0
a = 1; b = 150; c = -250000;
Δ = b2-4ac
Δ = 1502-4·1·(-250000)
Δ = 1022500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1022500}=\sqrt{2500*409}=\sqrt{2500}*\sqrt{409}=50\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-50\sqrt{409}}{2*1}=\frac{-150-50\sqrt{409}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+50\sqrt{409}}{2*1}=\frac{-150+50\sqrt{409}}{2} $
| 3x+5=1x-1 | | A=10x6 | | -6.1-3.7=4y+10.7-3y | | -2+19x=19x-2 | | 2(2(-x)+1)+(x)=(x)+2(-x)+18 | | 4(w+6)=9w+44 | | 4p=-p+4 | | x*3+x*2+x*1=0 | | 1.08^t=2 | | 0.53x=4-x | | 4m-9=-9-5m-m | | (81/4)+x=(-243/4) | | 0=-2.5x^2-14x-18.5 | | x+x=2+4 | | 4x^2−108x+288=0 | | 4x2−108x+288=0 | | (y-4)-3(y-9)-5(y+4)=0 | | 10^p=100 | | 4x+8x-17=68-5 | | 1/4(8x+12)=4x-1 | | 2x+23=x+19=90 | | 2(2x+4)=2x+1x+1 | | 10x+6x=25x=25 | | (4x)+(5x-18)+(3x+12)+114=360 | | 64(t-1/4)=56t | | -2x-39=3(-6x-7)+7x | | -2x-39=3(-6x-7)-7x | | (24-2x)(30-2x)=432 | | 2x+148-4x=124 | | 4x2+6x-40=0 | | 4x+8x-17=68-5x | | -2x-39=3(-6x-7)7x |